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DYNAMIC RESPONSE OF INITIALLY-STRESSED MEMBRANE SHELLS
by John W, Leonard, A.M. ASCE1

INTRODUCTION

This study is concerned with the dynamic behavior of extremely thin shells
which ha§e attained a given stress state due to previous loads. The response
of these structural components to the action of further in-service dynamic
loads‘will be studied and the effects of the initial stress state determined.

Initially-stressed thin shells have of late been used as temporary enclosures
at expositions, as prefabricated warehouses and fuel tanks, and aé inflatable
concrete forms for dome construction. They have been considered for use in the
erection of space and lunar'strdctures. For example, certain space structures
proposed for Saturn-Apollo applications can be optimized using such components:
their in-service structural rigidity being obtained via pressurization. Possible
appiications in the near future for sucﬁ light-weight structures include space
vehicle antennas and connecting tunnels between stages of manned orbiting stations
or lunar modules.

An important asbect of th; behavior of initially-stressed thin shells is
their action under in-service dynamic loads. For example, the behavior of an
infiated satellite is influenced by the dynamic nature of the inflation process
in that the shell arrives at its desired final configuration with a finite
velocity field. It is also influenced by control forces, external forces such

as gravity and solar pressures, and forces caused by movement of personnel

lAssistant Profesgor of Engineering and Apbligd Science, State University
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and propellant. Two other dynamics problems are 1) the effect on inflated
concrete forms of the large impact forces which result when shotcrete is ap-
plied, and 2) the effect of winds and earth tremors on shells used as temporary
sﬁelters, warehouses, and fuel tanks.

The behavior of extremely thin initially-stressed membrane shells is such
that classical methods are inadequate for their proper analysis. In recent |
years considerable attention has been given to the derivation of consistent shell
theories (2, 16, 23, 28, 32)2 and to the development of solutions for nonlinear
membrane shell problems (6, 10, 14, 18, 29). Another eorea of recent research
is the representation of nonlinear problems as a sequence of superpositions 6f
linear problems, static and dynamic, on previously solved linear or nonlinear
problems, e.g. prestressed membranes (1, 19, 20, 22). The classical dynamic be-
havior of thin shells of revolutions haé been studied, and solution methods for
the symmetric and asymmetric modes of free vibrations have been presented (3, 8§,
11, 22, 24, 26, 27, 31).

-In the following study, the equations of motion for a thin shell with a
general configuration and a prescribed initial stress state are derived. For
convenience, tensorxcﬁlculus has been ﬁsed to derive the equations of motion.
This was done in order>to arrive at a compact formulation which could then be
- checked for consistency. The general tensor equations are ghen specialized for
a shell of revolution with an arbitrary meridional configuration and are also
"cast into physical forms in order to obtain solutions to specific problems.

An approximate formulation of the equations of motion is discussed and a
solution procedure for the asymmetric modes of free vibration is derived. The

solution procedure is illustrated by means of several sample problems. The forced

2Numbera in parentheses refer to entries in the list of references in
Appendix II.
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response of these same shell problems is also studied.

EQUATIONS OF MOTION

The following assumptions were made in the derivation of the equations of
motion for the superpositions of small oscillations about the initially-stressed
configuration of a general sheli:

1) The reference surface for the added deformations is taken as the
initially-stressed middle surface.

2) The shell has negligible bending stiffness.

3) The thickness ratio = )\ = *h/L is small compared to unity, where
*h = one-half the shell thickness, and L = smallest characteristic
length of the middle surface.

4) The shell material is perfectly elastic, homogenious and isotropic.

5) The additional oscillations are infinitesimal.

A épecial notation has been used to denote Qﬁantities defined on the addi-
tionally deformed shell. Given a function £(x¥) defined on the initially-
stressed middle surface, the corresponding function on the additionally deformed
middle surface is denoted by [f(xdi + €' £'(x,%)7, where ¢'f'(x% t) = amount by
vhich [£(x") + g'f'(xa,t)] differs from £(x%t), x¥ e = 1,2) = middle surface
coordinates, and where ¢' = small non-dimensional parameter defined by the
superposed additional load vector.

The equations of equilibrium for the additionally deformed surface, here-
after denoted by M', are formed by replacing the stresses ~cting on a shell
element by their resultants acting on the cérresﬁonding element of-M'. When
this is done, the forces acting on M' are summed and are found to have the form

E(x®)(e')® + £ (x%e)(e")! + () ()P + === = 0
where the f,(x") terms correspond to the equatioqs of equilibrium for the in-
itially-stressed middle surface and ar; therefore identically zero. According

~

to assumption 5 above, all terms multiplied by ((')2 and higher are neglected
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compared to fe(x",t)(g')l. The equations of motion are found to be (for a more

detailed derivation'see References 19 and 20):

[0 ae Y - —?g—— AL 6 SN AR (1a)
CEOMEIRENLE S EN P )
where covariant differentiation is denoted by a vertical line used as a subscript,
and
2+ en'® - force resuitant tensor on M'

o = mass density of shell
*P = largest characteristic force on the initially-stressed middle surface.

L(F+¢'F(t)) = load vector on M' per unit area of M'

*p(r“#e'r'“)(xaﬂ't\'a) + (Fre'r'3) (R e'N')
A + ¢'A' = base vectors of M'

(e et . '
N + ¢'N = unit normal vector to M

LM

TP o 1y0 AP [ AP Ay *1"’
&Y [ ax _§;%¥ ]

A+ ¢'A’ = metric tensor of M'
op op
*Igy = Christoffel symbols of the initially~-stressed shell
B + ¢'B' = curvature tensor of M'
oy oy -
€'LV, (t) = superposed displacement vector

= g'(Lv:,"'Ky + W'N)

The effects of the initial stress state can be observed in Eqs. 1. They
consist of the stréss resultants n® of the initially-stressed middle surface
multiplied by functions of the added displacemené vector. These terms have
been grouped together within the second pairs of brackets in each equation.

Equation 1 can be expressed entirely in terms of displacement functions
by substituting into Eqs. 1 the relations between the force resultants and the

displacements.

’
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xpp' 07 - EAL [A“%'V + AP0, 2R AWU"’] - %pn®y'P
l+y o . (o] p P

1-y (2)
where
E = Young's modulus v = PoiFson's ratio
v'}’ Y o y_'. 4
=Ve'y "1 By : (3a)
* l3 'y ‘ X
v (L )+ V, B o (3b)

To complete the substitutions, the expressions for the additions to the metric

tensor and the curvature tensor in terms of the added displacements are needed:

A' =A U'P+a y'f (4a)
oy ooy v o '

+B U'P4+B U'P
ooy

y o &« ' (ub)

=1/2 [u'3 +ur3
ol|y o

Once tensor forms of the equations of motion (Eqs. 1) have been expressed
completely in terms of the additions to the displacement vector, it is necessary

to cast them into physical forms in order to solve particular problems of

interest. This is dome via substitutions of the ﬁhysical tomponents for the

various vectors on M'.

X':I(‘ll = Ly/Aw (no sum) :’§32 g— (5a)
) - |ﬂ)’ A

N (ay) = *Pn ¢K77;OQ + 1/2N(oy) [T_IZ } no stm) . .(Sb)

et - w w I

‘ A STy

LP'(3) = *PF'3 LP'(Q) = *PF'Q% + 1/2 LP(a) A—'mw (no sum) (5c)

where subscripts enclosed in parentheses denote physical components, and where
N(oy)’ and P(a) are’ the physical components of the initial stress resultants
n® and of the loads F* required to obtain N(ay)'

Shells of Revolutioﬁ - The general equations of motion can be specialized
for a shell of revolution with an arbitrary meridional contour (Fig. 1). The

t
middle surface coordinates are defined as follows: x1 = regular meridional
: j
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coordinate, e.g. arc length; and x2 = azimuth angle 6.
Asymmetric oscillations about an axially-symmetfic initial stress state
" have been considere&.v Therefore, derivatives with respect to 6 of all quanti-
£ies associated with the initially-stressed shell of revolution are identically
zero. For quantities associated with the additional deformationms, af(xl,e)/bx1 is
denoted by f(xl,e), and Bf(xl,e)/ae by f(xl,é). :Also, it is convenient to make
a change of notation: 1let |
u = v:,(l‘)/L v = V°(2) W= VL'@)/L (6)
The physical forms of Eqs. 1 specialized for a general shell of revolution

are

Do) ) B it o - i

A A A
x Al z] ~& 3yl _, 2t
K1 2A11 + K2 T + v Lo K2

+ YR K Ko+ A
:l [ 2 1.1 2n 3z
+ === | /A, +ulS=p .
11 RiR, Ry sz 11 LA r
~
A a2 A A A a2 A A LP A
r_r_._ 11 r _ r r, _11 r (1) b o
rvrTr¥ T Vot K ( rt ;2' 2A r) *TX /K11 r]
11 11
A
R R R+LR R "R, R R, R,
! 2 AT 14 1 2r "1
+ W =24 == - + r + K, =2 (
SR AR TR T 2 U RR,
R LP A Lp' 3 2
Ry Moy 2y, aad, Pl .
RE?) KR, AptTx ATk e = © (7a)
~, : JA, A A
AL | Ari- ] ]__1_1_ ~[sz E
uE 2 + v[ 5+ Klj /111 + Vv (1 + K2 resb AN At T

"N
A A
s i ) e S W 4 11 g_] r
rR 20+ T K 2An+r) K12AH;TK2r 7A
A A2 a4 a4l Ny ﬁ a2
1-p x X r)A_x_11 r _1l1 r r r
T vr 2 (r teEety A Tr2A ) + K1 r 2A r) K¥E /A,
LA 11 11 11
'
B i s W WP - PR/ Vo L P L .
LRR, R TRJYILT K M1 T UK 11 ot (b)
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?{ 1 .5 —% [ +uR '- K_2_’1 . :{ R1+1/R2
Apdob o R, ’R2
By ‘“—11 i ‘[K 11 s . u[ 2 Rytiky
R1 Ry rl 1 2A11 2 r_]/A T R1R2
A
K (.I_{_L . 2) .2 —:l [ 2+uR R1+UR2 . Kg] f‘ll
By Ryt Ry 1 R Ry
Lp' i3 2 . |
—(3) . 2A0L" 9
Ot e Sk L (7e)

where: K - gﬁlé K2 ] N[ll) x2 (22}

1-y K

= perpendicular distance of a point on the initially-stressed middle
surface from the axis of revolution

Rl’ R2 = non-dimensional radii of curvature of the initially-stressed
ghell

If Eqs. (7) are rearranged it is possible to segregate the effects of the
initial stress state as follows;

0= {...classical membrane equations of motion...}

+ N(ll) {...functions of the added diSplacements...r

+ N(22) {...functions of the added displacements...}

An approximate formulation of Eqs. 7 is discussed in Reference 20. 1In
that approximate theory for initially-stressed shells, it was shown that the
effects of the inigial stress can be neglected in the first two of the equations
of motion, Egs. 7a}and 7b. However, in the third equation of motion,Eq. Tc,
the initial stress components should be retaineJ in order to adequately des-
cribe the shell behavior in the neighborhood of discontinuities and non-membrane

type boundaries. The approximate formulation of the equations of motion for a

general shell of revolution is

)

2 ~ /K: ] tA n A
3+ c 1;2 rl]. Nléu “;1 A
S ’

Lo e - i

r




A N . Al ~ 8}
S R N (P YO [ DO W
RjR, "L AT r 2A,r Ry Ry™ A RyR,
R, -R Lp' 3 2 '
1-p~ 1727 (1) _ 2\l du
7T R1R2_J VAt A X A1 B—tg =0 (8a)
~ ~ ‘/A_ ~ ~ n N
Al 2~ l-p _r s 11 ~[ 1-p)  r7. 21l-plfA_ ¢
usSt+ v /Kil +V—= 4+ S5 X + rJ+ v =3 + 2
A R a2 A Iy R
I S e B S £ £+£2+£2\._£_1_1_]_£_- e o
2A11.J /KII 2 |r " r r\ r2A /A‘u R,R, 11
LP' 3 2
(2) _ 2oL Yy
+—x o vAy x - VEALS@ = O (8b)
s K Ry P R B s B s - B |
/A x L R1R2 R, " RyJ R R|R, R
+_K£]./Kn [K 1(2"7 2 Ry+R, x_l(ﬁ |
R, r /1‘11 1 2A rg T Yy R1R2 Rl Rl
+ .£) + E.g :r\-] - w[R2+VR1 + R1+UR2 - K - Kz] E_—Il
r R2 T R1 R.2 1 R1R2
LP' 3 2
(3) _ 2)pL dw _ ,
VA, XK YM13e = O (8c)

It was shown in Reference 20 that the approximate static equations equiv-
alent to Eqs. 8 gave solutions in close agreement with the'solutiéns to the
more exact formuiation. Also, both of those solutions were significantly
different from the solutions to the equivalent classical membrane equations
where the effects of initial stress are ignored. In a succeeding section, the
solutions to both the approximate and the exact;gquations, Eqs. 8 and 7 re-

spectively, will be compared for several sample dynamic problems.

SOLUTION TECENIQUE: FREE VIBRATION

Sad e avay S ILN AU L o e v a

In the consideration of the natural frequencies and associated mode shapes

for the asymmetric superposed equations of motion, all the forcing functions
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P'(l)’ P'(a), and P'(3) are assumed to be zero and the displacements to be

harmonic functions

a(x, 6, t) = wx(x, o) el
v(xl, 6, t) = v*(x!, §) '
w(x, 6, t) = wH(x', 9) e'tF

If in addition, the functions u¥*, v¥*, w¥*, are expanded in Fourier Series, it

(9a)

(9p)
(9¢)

. can be seen that Eqs. 7 and 8 admit solutions of the form (torsional vibrations

“are ignored ):

\

u*(xl, 9) =§ un(xl)‘cos né

n=0

v*(xl, ) =Z vn(xl) sin no
n=]

w*(xl, ) =2) wn(xl) cos né
n&

(10a)
(10b)

(10¢)

If Eqs. 9 and 10 are substituted into Eqs. 7, an infinite set of ordinary

differential equations results, each set of which has the form

A A
. _ g RS I n A e W
0O = u 1l +K, |+u + = -5 -K K, 71 + ==
L th xtr T2, T 12a rJ RE, R
_‘fg]ﬁ. . oAn Loy Y211 . un[ 12, & A, ¢ 2 214
R4Vt T T PXrTVrTVa r Tt T2 T2
2\\ N LR A2 A A n A
Al r _r 2 11 r nm A _ 3k
* K (2A11 rort 2 " rz) *eT pA11] VYT T2
og I o] /A nﬁl 32 ARMR A RRy X ﬁl '
- =+Gl= +w[-—z+ v —2 + + K, —=
2T 5 it Rl Ry A R1R2 r R1R2 1R1
A
AR-R_ R -
r 1 2 G :
+ K, (25 - -éi)--—-] JED
2 r RER, TR Ry ‘
.~ A . A .
Anfl- . Aafl-p A1 ¢ A £ _r
0-— '-'-u ] -—u - Ld - —— —]——
vz tRIA L Q T ) " K oA, e U]

(1)



A A A AR A2 A oA A:\\
“n.__u “[_l;zA it 0 4 _-n[.l_:us I__ Ar_x_ 11
T hu 2 vT 72 r t K T v 2 (r+ 23T " r2a )
T 11
A R OA. A 2 A
2 11 r f11orx r 2 %1 r
Stk G om ot en 3) All]/lf‘
11 11
R, +uR, 'K K
s ===2 L+ 2 /S (11b)
-T2 1 2
‘ I\
0 = w" 2 + 1 ———R2+UR1+K—--QJ+— K, = -K A“Mu“FAERl”'R?
/A RR, "R R, VA, L2r 12A11J LT RR,
A .
-ﬁ(ﬁ+£)+“_2£]+nvnﬁi"“_e_ﬁ+_e [2*”R1+R1*”R2
R, R "R T RR, R TR T R,
R,R '
12 /Ay
- K A RlRe"] RR (11c)
12
where
LP,. /A, 2 2
- 1K 11 o = ok 1E 2 (114)

If the approximate equations of motion, Eqs. 8, are considered, the set

‘of ordinary differeptial equations equivalent to the exact theory, Eqs. 11, are

as follows:

”N
A A A R.+R : /A oan A
_ An o _amf) L f 117 A 2T anltp P11 or AT F
0 = u +u [A + = EKII w —E;E;-'/Zil +ov SE—"=4+u LV(X il
~
A A A2 A A 2 A /A,
11 ry r _ 21-p_11 r 1 “[ A_3wr ] 11
TEA Y ) 2 > rz*Gr‘“PAu_l*“" L -
R é * RHR R, -R
S+ ‘ -
1 Y 1-p 2 17% G]
+w[-—e+u = + r =% - 2=\ /R (12a)
R, RZ ") R1R2 T RR, 24 VM1
ﬁ , A
fn l-y r ;!An_]_._:z ’i A11 T _r A l+p nl_gi 3_21?
O =V T aE-tY SN "o *?]/r '““2'““[2 )\*2?]
11 11 11
R.+1R . R A2 an AR A .
R e Ll
* e RES % "n[e (r+r2+kr reA,.)“‘ + Aujﬁ’l (12b)
. A
o = 2k An[R2+UR1 s s B [x 2 oz Rk,
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A
A A N
KR 2y Bt ot K Ko VA Rtk RiR,
K &I TYIRE, R TR YL R YR
1 1 1 12 1 2 | 2
R,R JAS
) - R 1%
K, K2(1 2 n<) RiRSP | KR, (12¢)

Determination of Eigenvalues -4The method used to determine the natural
‘frequencies and mode shapes for the asymmetric vibrations of initially-stressed
shells is (1) to select a trial value for the natural frequency ¢, and to check
if the trial value provides an unique solution which satisfies the equations of
motion (Eqs. 11 or 12) and their associated homogenious boundary conditions.

If the trial value of ¢ were a natural frequency, a non-trivial family of solu-
tions which differ only by a multiplicative constant would have been found.

Vhen the trial (»is substituted into the equations of motion, the combined
initial-valﬁe and boundary-value problem is converted into an equivalent boundary-
value problem for which one method of solution has been discussed previously (20).
This solution method is reviewed below. The trial frequencies are tested by
calculating a determinant associated with the equivalent static solution. Since
the elements of this determinant (described below) are continuous functions of
&, a change in sigé of the determinant for two different trial values of ¢y implies
the existence of a:natural frequency between those two trial valges. Then usiné
binary search techniques, one can obtain better approximations to the natural-
frequency. i

Boundary Conditions - The solutions to the combined initial-value and

boundary-value problem posed by either of Eqs. 11 or 12 can be obtained if the
initial conditions and six boundary conditions for each value of n are correctly
prescribed. . The three ?oundary conditions at an edge of the shell can in most
cases be readily obtained using Fourier exﬁansipns.

The criteria ifor establishment of boundary conditions in the particular

case of a shell continuous at the apex'are such that there exists no singularity
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at the apex (20, 31). Since the solutions un, vn, W are analytic functions at

the apex, it is possible to obtain solutions to either Eqs. 11 or 12 in the
neighborhood of x1‘= 0 (regular singlé point) by means of series expansions.

When the serieé expansions of u“, vn, w" are substituted into thé equations of
motion evaluated at‘x1 = 0, certain relations between the constants of the series
expansions are obtained which must be satisfied in order to satisfy equilibrium

at the apex. These relations can be considered as apex boundary conditions for

the numerical integration of the boundary-value problem equivalent to Eqs. 11 or 12.

Let xl be ¢, the angle that the normal to the shell makes with the axis of

revolution. The Taylor series expansions of un,’vn and w" about the point o = O are

W= HZO a; (pm ' ’ | (13a)
Vo= .;o b ¢ (13b)
W= ;Z; c: ¢? | | (13¢)

If Eqs. 13 are substituted into either of Eqs. 11 or 12 and if terms are
collected in powers of ¢, the vanishing of all terms independently of () yields
the following set of relations between the constants of the series expansions

(different relations are obtained for each value of n; only the relationships

for n = 0, 1, 2 are listed here)

n=0 (a;, b?, ¢$ arbitrary)

1
ad = bl = c1°;='a2° = b2° = c3° =0 (14a)
2(1+) (c2 - a,°) - (pR,2+ 2K, ) e2 —
e 1 1 1 | (1)
2 1+K1 '
o _ (1-3p . LK 2 o
e 2(1+y) ?2 ( 3 fm—§4;f PR,“) a; o
3 8(1+K1) . \i4cy

b O
6pR b, °
° - -1 771 .
b3 [1 BT (14d)

a® b.° cm°'determined by a,°, by % co°® for m 22

My g e i e
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1 1 1 .
n=1 (a2, b, cl.arbltrary)

co =2, = b]'I =c, = a3 = b3 =0 | . (15a)
aol = = b°1 . ) (ISb)
2%y 1. 1 ,1-3y 2 1
b21 =( =+ EKl) a, (1+p) <] ( -+ PR+ Kl) b, (15¢)
%532 + 2K
' 2 LK 1 1 1 1+ 1
L ROw) - pR7 - B3 ep - (1) (3¢, + by) + FE b, (158)
1 1 1 1 1 1
a s bm’ € determined by as, b.; ¢, for m,Z 3
2 2 2
n=2 (a3 » b7, o arbitrary) .
2 2 2 . 2 2 2 2
8, =by =c, £¢," =a, =D, = €3 = 0 (16a)
2 2 -
81 = -bl (16‘1‘))
3+p+2K } b 2
2 1 a 2 + -—1—— ) - -]-'--tu c 2
b." = 2 3 6 2 2 (16¢)
3 K. -y _
1
2 2 . 2
a b ,c determined by a3, b, ¢, form > k4

Numerical Integration Scheme - The method of solution chosen for the

boundary-value problem posed by either Eqs. 11 or 12 is a generalization of
Holzer's method (3,‘8, 12, 25, 31) in which the two-point boundary-value problem
is transformed into a set of homogeneous initial-value problems, each initial-
value problem being: integrated numerically using a generalized trapezoidal rule.
The proper initial éondi?ions for each initial-value problem are formed by as-
suming independent Qalues of the unknown derivatives at one Eoundary of the
shell. Since Eqgs. 11 and 12 are both sixth-order systems with three boundary

conditions prescribed at each end of a typical meridional line, three independent

assumptions can be made for the initial conditions for each of the three homogeneous
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initial-value problems.
The solution process for the two-point boundary-value problem is outlined
below: !

1. For an assumed value of () the 6th-order boundary-value problem is
transformed into 3 initial-value problems by assuming 3 independent

sets of homogeneous boundary conditions at one edge of the shell.

2. The solution to each homogeneous initial-value problem is propagated
along a typical meridian. Newmark's beta~method, a generalized trap-
ezoidal rule for intigration, is used. See References 19, 20, 25 for
discussions and applications of this method. Three partial solutions

are thus generated.

3. The total solution at any meridional point, including the boundary, is

a linear comblnation of the three. part1a1 solutions:
{ true ° partial
isolutlonf {solutions} { n? f (17)

where o are the constants of the combination.

4. 1In order ﬁhat the homogeneous boundary conditions at the edge be sat-
isfied, the linear homogeneous equations formed from the corresponding
portions of the partial solutions must have a non-trivial solution.

In other words, the determinate of the coefficient matrix for ﬁhe‘par-

tial solutions corresponding to the boundary conditions must be zero.

true boundary values 0
boundary ¥ = [ for ] { % } { o} } (18)
conditions Lartial solutions 0
boundary values .
A det for = 0

partial solutions

5. If the determinant is not zero, the trial value of (yis not a naturél
Irequency and steps 1 to 3 musi be repelat d for anoiher trial value,
After two' values of w are found for which the signs of the corresponding
determlnant are oppisite, a half-interval search is instituted to find

the bracketed value of (jcorresponding to a natural frequency.
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6. If the determinant is zero, the boundary conditions are satisfied and
the mode shape for that natural frequency is determinable to within an

arbitrary constant by solving Eq. 18 for 0 and ¢, in terms of o and

3
then by combining the partial solutions as in Eq. 17.

If the starting point for the numerical integration of the initial-
value problems is fﬁe apex, special methods must be used in the neighborhood
of the apex.. The solutions in the region of ¢ = O are approximated by Taylor
series expansions, Eds. 13. For any value of n, sufficient terms in the series
expansions must be taken such that all of the arbitrary constants in Eqs. 1k,
15, and 16 are included. This will guarantee that th; solutions at all points
in the shell are linear comBinations of all the arbitrary conditions at the
apex (20, 31). ' '

Since it is not possible to consider all terms in the Taylor series
expansions, it is #ecessary to use a successive approximation scheme for propa-
gating solutions ig the neighborhood of the apex. Such a scheme is described
in Reference 20. It was found that in cases where the geometry of the shell
chﬁnges rapidly near the apex, e.g. a paraboloid, more rapid convergence of the
successive approximations was possiblg if, instead of using Taylor expansions
of the displacement functions (u, v, w), Taylor expansions of u/Rl’ v/r, and
w were used.

Suppression of Extraneous Solutions. - The use of the generalized

Holzer method in cases where the numerical integration must proceed over a

long interval introduces serious convergence difficulties in that the solution

to each of the initial-value problems includes both a decaying function of x1

‘and a rapidly growing function of x1 (9). The coefficient of the rapidly growing
function should in theo;y.be zero, but because of various numerical integration .
errors is not exactly zero. For short regions of integration the rapidly growing

extraneous solutions have negligible effect on the combination of the partial
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solutions. However, for longer intervals of integration, the extraneous solu-
tions predominate and the equations which express the linear combinations of the
partial solutions are extremely ill-conditioned.

There are two methods in current use for alleviating this convergence
problem. One method, the multi-segment method, consists of subdividing the
shell region into short segments (4, 14, 15, 21). The initial-value problems
are integrated within each segment, and solutions are coﬁbined to satisfy compat-
ibility requirements at the junctions of the various segments. The second method,
the suppression method, consists of combining the partial solutions at selected
points along the meridian in order to suppress the extraneous solutions (3, 8,
30, 31): Although the two methods are similar in concept, and although the
multi-segment method lends itself to an easier physical interpretation, the
suppression method requires a lesser number of independent partial solutions.

_Also, instead of solving, for example, one set of 3N equations simultaneously,

o

N sets of 3 simultaneous equations are solved successively. For the above reasons
the suppression method was chosen in this study.

The suppression ﬁethod is implemented by requiring that at certain meridional
points fictitious conditions be satisfied by linear combinations of the unsup-
pressed partial solutions. The fictitious conditions to be satisfied must be
arbitrary, independent conditions which have small magnitudes compared with the
partial solutions. The partial solutions are therefore combined to form new
arbitrary partial solutions in which the extraneous growing functions are sup-
pressed. The linear combinations at the point of suppression and‘at all prior
points constitute the new set of arbitrary solutions which are then propagated
along the meridian to the next point at which suppression is required. The

suppression process is‘detailed in References 3 and 30.
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SAMPLE SOLUTIONS: FREE VIBRATIONS

In order to test the solution procedures described in the previous section
for both the exact and the approximate equations of motion (Eqs. 11 and 12),
several illustrative examples were solved for their natural frequencies and
mode shapes, only the n = O, 1, 2 harmonics being considered. A computer
program was developed which was capable of handling a shell of revolution with
a general meridional configuration. The program was tested on several sample
shell configurations including: a sphere continuous at the apex and fixed or
simply-supported at the base; a sphere fixed or simply-suﬁported near the apex
and at the base; a sphere with a rigid plug near the apex and fixed at the base;
a paraboloid of revolution continuous at the apex and fixed or simply-supported
at the base; a toroidal section with a rigid plug at one end and fixed at the
other end. The results for several of these problems are presented in this
section.

Sphere Continuous at Apex. - The first example considered was an initially-

stressed spherical segment fixed at its base as shown in Fig. 2a. The initial
stress state was attained via internal pressure ;, the smallest characteristic
length L = radius of sphere, and ¢° = opening angle of the spheré. If the

following substitutions are made in Eqs. 11 or 12, the natural ffequencies and

associated mode shapes for this problem can be obtained:
X = ¢n G=0 ~ r =R sinp (19a)

- 2
_x _PR(-p) R = _
Ky =K ="""iEx Ry =P = /A, =R (19b)

Several numerical problems were considered. Figures 3, 4, and 5 depict

At nmd Ao o~ o~
Heilth aliv DLAC DO HUUEC O

first three harmonics of a sphere with an opening angle of o = 45°. The

properties of the initially-stressed sﬁell considered are E = 300,000 psi,
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y = 0.4, X = 0.0001, L =100 ft., R = 1, N'(n) = N(gg) = 20,000 psf. Figs 6,
7, and & show the displacement mode shapes of a hemisphere with these same
properties except that ¢, = 90°.

In all of the above examples the exact formulation was used as the basis
of solution. When the approximate formulation was used, results were obtained
which were in close agreement to the more exact solutions. The solutions for
the two formulations are compared in Table 1 for a sphere with an opening angle
of 45°,

It is of interest to note that for a steep shell vibrating in its lowest
axisymmetric mode there exists a node, w = O, at an interior point. The loca-
tion of the node varies with the opening angle considered. Therefore, a uniform,
dynamic pressure loading cannot be adequately represented by onlybone,mode when
the modal analysis method for forced vibrations (described in a following section)
is used. 1In Fig. 9 are plotted the normal displacements for the first axisym-
metric mode shapes of spheres with various opening angles. For extremely steep
shells, note that the node occurs near ./2.

The effects of the thickness and initial-stress parameters were also
studied. For a shell of constant thickness, both the thickness parameter )
and the initial-stress parameter N(ll) are contained within the ﬁingle para-

metric expression

N (1-,?)
K, = (11) 1 ] (20)
2EXL

Therefore, for a given initial stress; the effect-of a change in thickness can
be obtained by maintaining a constant thickness and changing the initial stress.
Fig. 10 shows the effect of initial stress on the values of the natural fre-
quencies of a sphere with an opening angle of 45°. It was also found that the
initial stress had no appreciable effect on the shapes of the natural modes.

Sohere with Other Boundary Conditions. - Two other sphere problems were

considered: 1) a sphere fixed near the apex and at the base, Fig. 2b; and
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2) a sphere with a rigid plug near the épex and fixed or simply-supported at
the base, Fig. 2c. Several numerical problems were considered. Fig. 11 shows
t three no;mal displacement mode shapes for the first three harmonics
of two sphere problems with ¢:o = 45°. In both examples the shell near the
apex is assumed to be attached to the fixed support and to the rigid plug, re-
spectively, at ¢ = 1°.

The initial-stress states for these two examples were obtained Qia uniform
internal pressure. In the case of a sphere fixed at both ends of the meridian,
it was assumed that the sphere was completely supported on rollers which, after
the desired configuration was obéained, were rigidly clamped. The initial-
stress resultants for a fixed-fixed sphere therefore are the same as those used
in the previous section for a sphere continuous at the apex. In a similar
fashion for the sphere with a rigid plug near the apex, it was assumed that
the sphere boundary conditions during the pressurization phase were that the
base was on roller éupports and that near the apex the sphere was attached to

‘a rigid plug. After pressurization, the sphere is then completely clamped
at the base. The initial-stress resultants for a sphere with a rigid plug near

the apex are therefore

. _ _DIR L2 l-y .2 : :
N11) = 2 sinse (St iy, sinop | (21a)
. _ pLR L 2 - -y . 2 .
R(EE) 2 sinzo LSln o 1+ sin Cij (21b)
-QL
where the solutions have been linearized, i.e., terms of order RXE have been
neglected, and where (3, = angular location of rigid plug.

1

Shells of Revolution with More Complex Geometries., - In order to demon-

strate the solution procedure on a sample problem with a more complex geometry
then that of a sphere, two further examples were considered: 1) the paraboloid
of revolution shown in Fig. 12, and 2) the toroidal section shown in Fig. 13.

For .the paraboloid of revolution, several numerical examples were solved. The

‘

<
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results of one of

displacement mode
continuous at the

paraboloid considered in Fig. 14 is E

= 50 ft., a =1, ; = 500 psf, where

these problems are depicted in Tig.

apex and fixed at ¢, = 45°.

P

14, where the
The data for the particular
300,000 psi, p = O.4k, ) = 0.0001,

is the internal pressure used to cal-

culate the initial-stress resultants (18).

The toroidal shell problem considered, Fig. 13, was that of a section of

a torus fixed at the base,

The numerical data for the particular example considered are

p=0.4 L =100 ft., a = -0.25,

= 30°,

-

E = 300,000 psi,

(v = 90°, and ; = 400 psf, where

p is the internal pressure used in the calculation of the initial-stress re-

sultants by the foliowing equations

a(1-2y) + é(l-u)sinﬂl,

N _ LRE a4+ R sin ¢~ {1 sinem 1
: (11) - (a + R sin (f}) 1 Sind(ﬁl a + R(1+1/) sin (_'51
N _ RE {1 31n2m1 a(l-2v) + R(1-y/) 31nm1$

(22) sxngm a + R(l+y) sing) J

¢ = (o, and attached to a rigid plug near the apex.

The first three normal displacement mode shapes for the first three harmonics

of this particular example are shown in Fig. 15.

FORCED VIBRATIONS

Once the natural frequencies and associated mode shapes of free vibration

for a thin initially-stressed shell of revolution have been obtained,

it is

possible to determine the response of the shell to time-dependent loading con-

ditions by means of the modal analysis method (3, 13, 17, 31).

it is assumed the transient displacements

convergent sum of the mode

tiplied by a time dependent particination

shapes of free

can be vepresented as an infinite,

shape bein

o
o

‘te the determination of a sufficient number of mode participation factors to

In this method

is then reduced

first three

shapes are plotted for the first tvo harmonics of a naraboloid

(22a)

(22b)

mul -
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adequately vepresent the forced response of the initially-stressed shell.

The equations of motion can be written as

S

. L3 d u _ 3 . ou _ .

’ Ll(u, v, w) + LP (l),/'A'll - 2)oL /'All —-——atg 2XCL /Kll * = 0 (23a)
. ‘ 2

‘ Q < -~

L2(u, v; W) o+ LP'<2)1: - 2,\pL3r —-it;’ - 2)CL-r ——-g‘t’ = 0 (23b)
3 ¥ 39
- ' - 9w _ ov

L3(u, v, w) + LP (3) 2)pL 2 eACL” 3o = 0 (23¢)

where L, (u, v, w) = differential operator rélated to the equivalent static
problem, and C = coefficient of viscous damping. Note that Egs. 23 are a

slight generalization of Eqs. 7 or § in that a first approximation to the effect
of viscous damping has been included. It is assumed that the shell is under-
damped, i.e. C < Ccr’ where Ccr is the coefficient of critical damping.

Let the displacements be expanded in terms of the natural modes as follows

u(xl, 6, t) = Ny 'jl uni (xl) cos né F_. (t) (2ha)
v(xl, 6, t) = il"il vni (31) sin ng ¥ . (£) (24b)
w(xl, 8, t) = i; ?i; wni (xl) cos né F_. (t) (2ke)

n n . n , - .th
where u o Vg Wy are the modal displacements for the i~ ordered mode of the

D)

ntn harmonic, and Fni(t) is the corFeSponding time~-dependent mode participation
factor.

The Equations 23 are combined as follows: 1) Egs. 24 are substituted
into Eqs. 23; 2) the equations of motion for free vibration are used to elim-
inate each of the Li's; 3) the equations are multiplied by uni cos nd,
vni sin n@, wni cos nf respectively and then added together; 4) the result
is then integrated over the surface-area of the initially-stressed middle sur-
fage; and 5) orthogonality properties of the natural modes are used to elim-
inate terms. When the above steps are completed, the following ordinary dif-

ferential equation is obtained
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7 L Dy P = 3 ) <z
Fag T 2wqs” Ty + oy = Qi (E) (252)
where
A n _,n VA1 g
/t — —— | . 1] 1 . 1 d_ o
W ey L T (252)
o P 0P 07wy e (25¢)
K~ ja u, + wi J t/A14 X 5¢

In the above equations, Fni = ani/dt’ g is the ith ordered natural frequency
for the nth harmonic, £ is ratio of the coefficient of damping to the coefficient
of critical da&ping, Kni is the modal normalization constant, and P'(i) (xl, 6, t)
have been expanded as Fourier scries in 6.

The problem of determining the transient response of initially-stressed
shells for which natﬁral frgquencies,and mode shapes are available has been
reduced to that of solving the classical initial-value problem posed by Eqs. 25

™

for F .. The initial-value problem can be integrated by means of Duhamel integral

ni
techniques if the transient load vector is expressible in terms of a single
forcing function, or by means of the generalized Holzer method. The latter was

chosen in this study.

Initial Conditions.- It is necessary to prescribe initial conditions for

®
Fni and F_ . at time t = O. These conditions can be arrived at from consideration
T ni ;

of Eqs. 27. The initial condition for the shell diSplaceﬁents and velocities are

u(xl, 6, 0) = f) ut (xl) cos nd (26a)
n&0
1 & n, 1
v(x~, 6, 0) = Vo (x7) cos nd ‘ (26b)
ol
1 < n, 1 ]
w(x, 9, 0) = , wo, (x ) cos nd (26c)
. nk=o

If steps 3 through 5 (as outlined above for the equations of motion) are repeated

using Egs. 26, the following initial conditions on Fni(t> are obtained




b

- 1 r n_n n n — 1 ~
zni(O} = 3 Ja.(uo Ul Ve V. AW, W ) r/}ll dx (27a)

ni
s 1 Y ! n e n n s 1 n — ! -
F.(0) = = | (g u, +vVe V., +w, W, ) n/All dx (27b)
ni . o A i

ni

In order to treat a particular forced vibration problem, using as a basis
for solution the superposition theory presented.herein, it is necessary to
select a value for ¢', the small non-dimensional parameter defined by the super-
posed load vector. If the dynamic load vector guperposed is dénoted by

aP(t), a reasonable measure for ¢' is

f,Eﬂ b

r 1 ..
- Jo o APmax(t) /K, dx" de (26a)
€ = rem b = 1

JO ga T /Ay dx

where F is the static load vector on the initially-stressed shell.
For transient response problems in which superposed initial displacements

and velocitics are considered, a reasonable measure for ¢' is

L |
j ! aV(x", 6, 0) + :
= o Ja L “rund
2T b _ 1
Jo Ja Vo (¢n, 6) r/All dx~de

= 1
-
aV(x', 6, 0) J n/All dxlde

(28b)

where AV(xl, 6, 0) and AV(Xl, 6, 0) are the superposed initial displacement and
velocity vectors, respectively, and where Vo is the non-dimensional static dis-
placement vector of the initially-stressed middle surface.

~Sample Forced Vibration Problems. - The modal analysis method was tested

on several dynamic problems. It is not the purpose of this section to solve

a problem of particular interest, but rather to demonstrate the modal analysis
method and zlso to show the validity of the mode shapes found in the previous
free vibration sample problems. Thereforé, three simple problems were chosen,,

1) a crude approximation to a static wind load (7),

= ¢'p sin ¢ cos 6. O0<t <=
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2) a constant over-pressure q'P‘(9> = ¢'p; and 3) an initial velocity cis-
-

cportional to the static displacement field of the initially-strescsed

t
[a]
=
O
o
T
=
o]
ol
4o
]

The fivst tvo problems were chosen because the static results of the
éame problems are available for comparison, thus providing a check on the
validity of the free vibration mode shapes. 1In all three problems, £ was chosen
(31) as 0.01.
Fig. 16 shows the dynamic wind (g'; = 40 psf) stresses at two meridional
points on a sphere continuous at the apex and fixed at ¢, = 45°. At time t = «,
‘the dynamic oscillations have died out.and the displacements as calculated by
the.modal analysis method should equal the displacements‘as calculated from
thé static theory (20). Iﬂ Fig. 17, the first three partial sums(at t = «)
of the no%mal modes multiplied by the participation factors are compared to the
equivalent static solution. It caﬁ be seen that only 3 modes need be considered
in order to give answers in close agreement with the static solution.

InFigs. 18 and 19, the partial sums of the displacement and stress mode
shapes of a sphere continuous at the apex and fixed at (o = 45°, each mode
being multiplied by a limiting participation factor for a constant overpressure
of 40 psf, are compared to the equivalent static solution (18). It can be seen
that more mode shapes are required to adequately represent the static stresses
than.are required to represent the static displacements.

The final problem considered was that of the response of a sphere, contin-
uous at the apex and fixed at ¢, = 45°, to an initial velocity distribution

with a shape proportional to the static displacement field of the pressurized

sphere, 1In this case -

AT Do -
JO o 3 ¢ Vo r/A., di:do
' = e é‘md = u‘-“’ = .06025
" ° = 3 fund
Io .,ro Vo x/A;; dedo

.

vhere ¢ is the -constant of proportionality (chosen as 3.0), and from Fig. 3,

Upyng = ¥9-75. The partial sum of 5 modes was found to give an adequate
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representation of the dynamic response. The superposed stress resultants at

¢

three meridional points are plotted as a function of time in Fig. 20.
CONCLUSION

The asymmetric response to free and forced vibrations of an initially-
stressed membrane shell of revolution has been studied. Equations of motion
have been presented for small free vibrations about a previously deformed
middle surface. The assumptions inherent in the mathematical model are: 1) the
thickness ratio is small compared to unity; 2) the moment resultants are
negligible compared to the force resultants; 3) the material is elastic,
homogeneous, and isotropic; and L) the superimposed dynamic strains are infini-
tes;mal.

The natural frequencies and mode shapes for the exact and the approximate
formulations of the equations of motion were determined numerically using the
generalized Holzer method. Convergence difficulties for steep shells were
allewviated by suppressing extraneous éolutions at intermediate points. 1In the
neighborhood of the apex a‘Special technique was used to integrate the equations
of motion. This method is based on Taylor expansions of the displacements.

For sheils with rapidly varying geometries near the apex, it was found that more
rapid convergence of the solutions was possihle if Taylor‘expansions of functions
of the displacements and of certain geometric quantities were used.

The modal method of analysis was used to determine the transient response
of initially-stressed membrane shells to static and dynamic loads. The solution
techniques developed for the .free and forced response of the general shell of
revolution were tested on several sample shell geometries with varied boundary
conditions. It was found that the magnitude of the initial stress had a sig-
nificant effect on the natural frequencies but did not significantly effect the

-~

associated mode.shapes. Both the exact and approximate formulations yielded
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solutions in c¢lose agreement with each other,

Further research is needed on the determination of the dynamic response

4]

5
i

-ty

o otropic and anisotropic shells with non-symmetric initial-stress states.
The'buckiing behavior,’local and global, of extremely thin initially-stressed
shells is another important subject in need of study. For one type of initially=-
stressed shell, an inflatable shell, the determination of the local buckling

characteristics is extremely important in .that inflatables tend to wrinkle and

kink at boundaries.
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APPENDIX II - NOTATION

metric tensor of M'

focal length of paraboloid, or distance defined by Fig. 13
Taylor series constants in Egs. 13.

curvature tensor of M'

coefficients of viscous damping

Young's moduius

tensor components of the non-dimensional superposed
load vector.

mode participation factor

L2y VA /K

one-half the thickness of initially-stressed shell
2ENL/ (1-1°)

Moo

smallest characteristic length of *M

middle surface of initially-stressed shell.
middle surface of additionally deformed shell,
physical components of n® + ¢'n'™

force resultant tensor on M'

largest characteristic load on *M.

FIC'{ FI3

physical components of 5

oL2(1-07) (5 /2

internal pressure on *¥M

non-dimensional sphere radius
non-dimensional radii of curvature of *M

rnandic:

1
evolution.

o nJ

n
r
r

e
f

time.
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displacement functions defined by Eqs.

)

displacement functions defined by Eqs. 6.
functions defined by Egs. 9.

functions defined by Egs. 10.

s fo n n n
initial conditions onu, v, w , at t = 0.
tensor components of the non-dimensional superposed

displacement vector.
physical components of V',, W.
non-dimensional coordinates of ¥, ¢« =1, 2.

C/Ccr°

Christoffel symbols of M',

superposed load increment.

superposed initial displacement vector.

arbitrary small parameter defined by superposed loads.
azimuth angle of a shell of revolution.

thickness ratio = *h/L.

Poisgon's ratio.

mass density of initially-stressed shell.

angle normal to *M makes with axis of revolutionm.
one-half the opening angle of *M.

angular location of rigid plug.

frequency.
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